Temperature dependence of IP3-mediated local and global Ca2+ signals.

نویسندگان

  • George D Dickinson
  • Ian Parker
چکیده

We examined the effect of temperature (12-40°C) on local and global Ca2+ signals mediated by inositol trisphosphate receptor/channels (IP3R) in human neuroblastoma (SH-SY5Y) cells. The amplitudes and spatial spread of local signals arising from single IP3R (blips) and clusters of IP3R (puffs) showed little temperature dependence, whereas their kinetics (durations and latencies) were markedly accelerated by increasing temperature. In contrast, the amplitude of global Ca2+ waves increased appreciably at lower temperatures, probably as a result of the longer duration of IP(3)R channel opening. Several parameters, including puff and blip durations, puff latency and frequency, and frequency of repetitive Ca2+ waves, showed a biphasic temperature dependence on Arrhenius plots. In all cases the transition temperature occurred at ∼25°C, possibly reflecting a phase transition in the lipids of the endoplasmic reticulum membrane. Although the IP3-evoked Ca2+ signals were qualitatively similar at 25°C and 36°C, one should consider the temperature sensitivity of IP3-mediated signal amplitudes when extrapolating from room temperature to physiological temperature. Conversely, further cooling may be advantageous to improve the optical resolution of channel gating kinetics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intra-Cluster Percolation of Calcium Signals

Calcium signals are involved in a large variety of physiological processes. Their versatility relies on the diversity of spatiotemporal behaviors that the calcium concentration can display. Calcium entry through inositol 1,4,5-trisphosphate (IP3) receptors (IP3R's) is a key component that participates in both local signals such as "puffs" and in global waves. IP3R's areusually organized in clus...

متن کامل

A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback.

Ca2+ liberation through inositol 1,4,5-trisphosphate receptor (IP3R) channels generates complex patterns of spatiotemporal cellular Ca2+ signals owing to the biphasic modulation of channel gating by Ca2+ itself. These processes have been extensively studied in Xenopus oocytes, where imaging studies have revealed local Ca2+ signals ("puffs") arising from clusters of IP3R, and patch-clamp studies...

متن کامل

How Does Calcium Oscillate?

Ca2+ is the most important second messenger in living cells serving as a critical link between a variety of extracellular stimuli and their intraand intercellular responses. The external signals are translated most often into repeated increases of the cytosolic Ca2+ concentration. Due to their importance and frequent appearance, Ca2+ oscillations have been extensively studied in experiments and...

متن کامل

Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes.

Following receptor activation in Xenopus oocytes, spiral waves of intracellular Ca2+ release were observed. We have identified key molecular elements in the pathway that give rise to Ca2+ excitability. The patterns of Ca2+ release produced by GTP-gamma-S and by inositol 1,4,5-trisphosphate (IP3) are indistinguishable from receptor-induced Ca2+ patterns. The regenerative Ca2+ activity is critica...

متن کامل

Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals.

Ca2+ liberation through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a universal role in cell regulation, and specificity of cell signalling is achieved through the spatiotemporal patterning of Ca2+ signals. IP3Rs display Ca2+-induced Ca2+ release (CICR), but are grouped in clusters so that regenerative Ca2+ signals may remain localized to individual clusters, or propagate globally betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 2013